

AIPlan4EU: Planning and Scheduling for Space Applications

K. Kapellos1, A. Micheli2, A. Valentini2

1 Network Research Belgium - TRASYS International BU
2 Fondazione Bruno Kessler – Planning, Scheduling and Optimization Unit

1 ABSTRACT

AIPlan4EU is a European Horizon 2020 project aiming

at lowering the access barrier for practitioners interested

in using automated planning and scheduling techniques.

The project encompasses eight major use-cases, and

many more have been elicited by a third-party funding

schema.

Among the major use-cases, ‘Planning for Space’ targets

the automation of the planning process of multi-asset

human-robotic missions as prepared by the National

Space Agencies, the European Commission, and the

European Space Agency. Typical examples are the

ExoMars mission for Mars exploration, as well as

missions for moon exploration and exploitation. In this

context, the ground operators prepare Activity Plans to

be executed by the robotic system on the planet as a

logical and temporal composition of robotic Activities.

In addition, the system shall merge Activity Plans

proposed by different remote operators to a final

consolidated Activity Plan to be uploaded for execution.

This paper discusses the project genesis and the major

results, with a specific focus on the space application

use-cases and its integration into ESA activities.

2 INTRODUCTION

Automated planning is the problem of synthesizing a

course of actions to achieve a desirable objective

exploiting a formal model of the system to be controlled

([1]). Over the years, a plethora of techniques and tools

have been developed for different kinds and flavors of

planning problems. Notably, classical planning is the

problem where the activities of the system are assumed

to be instantaneous, and the model is finite-state;

numeric planning extends classical planning by

allowing numeric variables and arithmetic constraints in

the model; temporal planning relaxes the instantaneous

duration assumption and allows the modeling of

schedules, deadlines and temporal constraints. In

addition to these classes, others, such as Multi-Agent

1 We use the term “planning engine” in a very broad sense in

this paper to indicate not only plan generation tools, but also

Planning, Task and Motion Planning, Contingent

Planning, are possible ([2]).

Despite considerable success stories in the literature

(e.g., [3]), these techniques are rarely employed in real

world applications and their adoption is hindered by

technical difficulties. In particular, each planning

engine1 differs from others in terms of supported

features, sometimes input language and command line

interface. While this is not too problematic for planning

researchers, it makes it hard for practitioners to select

the right tool for the task at hand and for comparing the

performances and merits of different planning engines.

The major objective of the AIPlan4EU Horizon 2020

project is to overcome this situation, providing a unified

modeling framework for planning problems and making

it trivial to test different planning engines. Moreover, the

project is bringing automated planning to the European

AI On Demand platform ([4]), reporting a vast number

of use-cases, demos and experiences to provide planning

users with all the information needed to explore and use

automated planning in practice.

Among the AIPlan4EU project use-cases, one of the

major ones is planning for space applications, in which

we demonstrate the use of the Unified Planning library

([5]) for the automation of the planning process of multi-

asset human-robotic missions as prepared by the

National Space Agencies, the European Commission,

and the European Space Agency. Typical examples are

the ExoMars mission for Mars exploration, as well as

missions for moon exploration and exploitation. In this

context, the ground operators prepare Activity Plans to

be executed by the robotic system on the planet as a

logical and temporal composition of robotic Activities.

In addition, the system shall merge Activity Plans

proposed by different remote operators into a final

consolidated Activity Plan to be uploaded for execution.

The paper is structured as follows. We first provide an

overview of the AIPlan4EU project, its architecture and

the major results it has produced so far. Then, we present

any other software asset providing a service in the context of

automated planning.

the solution we developed for the space-domain use-

case of the project, explaining the problems it can solve,

its main characteristics and contextualizing it in the state

of the art. Finally, we discuss the next steps and draw

our conclusions.

3 AIPLAN4EU ARCHITECTURE

AIPlan4EU is a Horizon 2020 project funded by the

European Commission under the ICT-49 call ([6]). The

project started in January 2021 and will end in

December 2023. The focus of the project is to simplify

the accessibility of automated planning technologies

bringing them in the European AI On-Demand Platform.

From a technical perspective, the overarching objective

of the AIPlan4EU project is to provide a single, easy-to-

use access point to planning technology. Concretely, the

project developed a Python library, called Unified

Planning, which provides a convenient API to model,

manipulate, and solve different classes of planning

problems. The library leverages a curated collection of

planning engines which are integrated and seamlessly

available to the users in such a way that it is possible to

test and use different engines for a certain problem

without caring about the engine details: the library takes

care of the needed rewritings and interfacing

transparently. The Unified Planning API can then be

used to answer different planning queries in

applications.

Figure 1: The AIPlan4EU Overall Architecture

In addition, the AIPlan4EU project provides several

“Technology Specific Bridges” (TSB), which are

interfaces of the Unified Planning services for certain

domain-specific technologies. For example, we

developed several reusable TSBs for robotics, allowing

the use of the Robotic Operating System (ROS)

infrastructure to interface with the Unified Planning

services. Error! Reference source not found.

summarizes in an infographic the project vision: the

Unified Planning (UP) framework is the central

component, providing services to the use-cases through

“Technology Specific Bridges” (TSBs) and abstracting

away the specificities of planning engines integrated in

the library. The figure also shows by means of color the

“domain specific” parts in orange and the “domain

independent” parts in blue: the UP is designed to be

domain independent in the way it offers its services and

relies on a series of domain independent planning

engines.

The second technical objective of the AIPlan4EU

project consists in bringing the unified planning

framework to users of the AI On-Demand Platform. This

is done in two ways: we provide educational and case

study material on the platform, and we provide users of

the AI4Experiments tool a reusable component

encapsulating the features of the unified planning

framework and its engines.

In the following, we describe in more details the Unified

Planning framework, the planning engines and the TSB

concepts before focusing on the space applications and

describe the part of the project concerned with the

consolidation of activity plans for ESA missions.

4 UNIFIED PLANNING

In order to concretely realize this vision, we designed a

Python library (called unified_planning in code

and referred to as “UP library” in this document). The

library is being developed publicly under a permissive

open-source license (Apache 2.0) and the code is

available at https://github.com/aiplan4eu/unified-

planning.

The library offers a series of unique features to incarnate

the vision above. First, it provides a clean and

documented API for creating, manipulating and

(de)serializing different kinds of planning problems.

Second, it provides a set of services to solve planning

problems standardizing the interaction with the

underlying planning engines by means of “Operation

Modes” and “Custom Resolution Strategies”. Finally, it

provides a plug-in system allowing external planning

engine developers to provide new engine capabilities

without touching the UP library (and thus benefiting

from the UP services and interoperability without being

involved in the UP development in any way).

The UP library allows the user to represent planning

problems, scheduling problems, plans and hierarchical

structures by means of a series of interconnected classes

provided by the unified_planning.model

package. This package provides the basic building

blocks to represent planning entities and allows the user

to create (either programmatically, or by means of the

interoperability facilities) the planning elements to then

pass to the engines to be solved/analyzed/transformed.

Another core modeling feature we provide is the

unified_planning.shortcuts package, which

provides simplified access to the most common features

of the library without importing them from the various

sub-packages. The package allows the creation of the

basic modeling elements as well as the invocation of

https://github.com/aiplan4eu/unified-planning
https://github.com/aiplan4eu/unified-planning

operation modes and the specification of custom

resolution strategies. At the time of writing, the UP

library supports the following classes of planning

problems:

• Classical planning: a planning problem where all

the fluents are Boolean and the actions are assumed

to be instantaneous.

• Numeric planning: an extension to classical

planning where fluents can be of numeric type and

arithmetic can be used in conditions and effects.

• Temporal planning: the problem of finding a plan

for a planning problem involving durative actions

and/or temporal constraints.

• Scheduling: a restricted form of temporal planning

where the set of actions (usually called activities) are

known in advance and the problem consists in

deciding the timing of the activities.

• Multi-agent Planning: a planning problem where

many agents operate in a common environment, each

with their own view of the domain. The objective is

to produce a set of plans, one for each agent, which

allows the agents to achieve their goals.

• Contingent planning: an action-based problem in

which the exact initial state is not entirely known and

some of the actions produce “observations” upon

execution.

• Hierarchical planning: a planning problem

augmented with high-level tasks that represent

abstract operations (e.g., processing an order, going

to some distant location) that may require a

combination of actions to be achieved. Each high-

level task is associated with one or several methods

that describe how the task can be decomposed into a

set of lower-level tasks and actions.

• Task and Motion Planning (TAMP) integrates Task

Planning, i.e., the problem of finding a set of discrete

high-level actions that let the object perform the

assignment, and Motion Planning, i.e., the problem

of finding a valid (i.e., collision-free) trajectory and

subsequent low-level motor commands that allows

the object to execute such high-level actions in the

continuous-space environment in which it acts.

Also, the plans (i.e., the solutions to planning problems)

are represented in a standardized way in the UP library

in the package unified_planning.plans.

Different kinds of problems admit different kinds of

plans, but multiple plan kinds can be used on the same

problem description (e.g., for a classical planning

problem, the simplest kind of plan is a sequence of

action instances, but also a partial order of actions

instances can be seen as a more general solution). We

currently support 5 kinds of plan:

• Sequential: an ordered sequence of action instances.

• Partial-Order: a set of action instances and

precedence constraints among them.

• Time-Triggered: a sequence of triplets <t, a, d>,

where t is the time at which durative action needs to

be started and d is the prescribed duration.

• Simple Temporal Network: a set of time points

indicating either the start or the end of a durative

action and a set of temporal constraints of the form x

- y <= k where x and y are time-points and k is a

rational constant.

• Contingent Plan: a tree structure, where each node

is an action instance to be executed and the edges are

labeled with observation. An execution is a path in

the tree where we select the edges that are observed

at runtime.

• Hierarchical Plan: it combines a sequential or time-

triggered plan (that specifies the primitives actions

achieving the problems objectives) and

decomposition metadata that associate the primitive

actions with the high-level tasks they achieve.

Operation Modes (OMs) represent and standardize the

possible interactions with a planning engine. Each OM

defines an API that an engine willing to support the OM

shall implement: in this way, engines declaring to

support the same OM can be used interchangeably. All

the operation modes can be invoked by using the

Factory class, which implements the engine-selection

mechanism based on our plug-in system. When calling

the OM constructor (either from the factory or from the

shortcuts) it is always possible to specify the name of the

engine to be used (i.e. to force to select a specific engine,

if available) or to let the UP to select an engine

automatically, by specifying only the ProblemKind

(which can be retrieved automatically from a problem p

using the p.kind property). An operation mode

defines and standardizes a possible way to interact with

a planning engine. The available operation modes are:

• OneshotPlanner: single call to a planning engine

that given a problem returns a plan (or a failure

response).

• PlanValidator: given a planning problem and a

plan, checks if the plan is valid.

• SequentialSimulator: given a problem provides an

interactive way to explore the reachable states.

• Compiler: transforms a given problem into an

equivalent one performing some kind of rewriting.

• AnytimePlanner: iteratively generates solutions to

a planning problem (e.g., incrementally better plans).

• Replanner: interactively generate new plans given a

problem and subsequent changes to it.

• PlanRepairer: given a planning problem and a

(possibly invalid) plan, returns a valid plan.

• PortfolioSelector: given a planning problem selects

the best engines to solve the problem.

Finally, Custom Resolution Strategies (CRS) are

procedural specifications (i.e., python code) that can be

used to guide an engine or to specify some action

behaviors. The general intuition behind CRSs is that

being the UP a python library it makes sense to cleanly

expose advanced control capabilities of planning

engines by allowing the use of python code. Moreover,

it is sometimes hard to specify complex behaviors using

standard explicit modeling, while it could be convenient

to use procedural specifications. The UP library

currently offers two kinds of CRS: namely Simulated

Effects and Custom Heuristics.

5 PLANNING ENGINES

The integration of different planning engines in the UP

serves the purpose of lowering the barrier for accessing

planning technologies. We provide a homogenous

Python interface that is exposed to the UP, which

delivers the operation modes and we have identified and

integrated a number of planning engines from the

literature, and developed a number of facilities that

enable the use of such planning engines with different

operation modes. In particular, we have developed two

Problem Specifications Interfaces to meet the different

requirements of integration of the planning engines, and

we have made the integrated planning engines usable

across different operating systems (MacOS, Linux, and

Windows). We concentrated on six kinds of planning

engines, depending on the expressivity of the planning

problem formulation, namely: classical planning,

numeric planning, temporal planning, multi-agent

planning, refinement planning, and combined task and

motion planning. Note that the distinction between these

classes does not prevent that some planning engine

integrated for a task can also be suitable for one or more

other tasks, in fact many engines are capable of handling

multiple classes.

We support two types of integrations: one is based on a

declarative representation of the task being solved; the

other one is based on a procedural representation. The

declarative interface is based on a well-known standard

language that is used by the planning community: PDDL

(Planning Domain Definition Language). This interface

is based on transforming the data contained in the UP

into PDDL and using the planning engine through a

message-passing mechanism based on files. That is,

once a problem is formulated in the UP, such a problem

is translated into PDDL (using the facilities provided by

the UP) and, therefore, any planner supporting PDDL

can be connected to the UP. The second interface that we

provide is based on a deeper integration of the planning

engine in the UP. Instead of interfacing it through files,

we populate the data structures of the planning engine

directly from the UP data-structures. While the

declarative interface makes the infrastructure more

modular and requires no change to the implementation

of the planning engine, the deeper integration interface

potentially reduces the overhead of the integration of the

planning engine. More importantly, planners using deep

integration can provide advanced features such as

custom heuristics and simulated effects, while this is not

generally possible with a declarative kind of integration.

As we will see, some planning engines support the

former interface, while some other planning engines

support the latter one. We now report some details about

the engines that have been integrated.

• Fast Downward ([7]) is a state-of-the-art domain-

independent classical planning system based on

heuristic forward search. It implements a wide range

of heuristics and search techniques that are now

accessible through the UP.

• Pyperplan ([8]) is a lightweight STRIPS planner

developed by the participants of a planning course at

the Albert-Ludwigs-Universität Freiburg

(Germany). It supports STRIPS actions with uniform

costs and emphasizes the clarity of code and the

underlying concepts.

• ENHSP ([9]) is a heuristic forward state space

search planner that looks for a plan in the transition

system induced by the numeric planning problem

definition. ENHSP is equipped with different search

strategies and heuristics leading us to use the system

in multiple operation modes.

• LPG ([10]) is a planner based on stochastic local

search and action graphs. The search space of LPG

consists of “action graphs” representing partial

plans. The search steps are certain graph

modifications transforming an action graph into

another one, and the search is guided by relaxed plan

heuristics.

• TAMER ([11]) TAMER is an application-oriented

temporal planner for the ANML (read as “animal”)

planning specification language. The objective of

TAMER is to provide functionalities to model, solve

and analyze planning problems in practice.

• FMAP (Forward Multi-Agent Planning) ([12]) is a

multi-agent planner aimed at solving multi-agent

planning problems in a cooperative, fully distributed

and privacy-preserving setting.

• Aries ([13]) is a constraint-based planner and

scheduler whose primary focus is on hierarchical and

temporal planning problems. It works by compiling

planning problems to a CSP for which it leverages a

specialized combinatorial solver.

• SpiderPlan ([14]) is a flexible constraint-based

planner that can be extended with new types of

constraints SpiderPlan supports TAMP: motion

planning is implemented as propagation and is based

on the multi-robot coordination framework ([15]).

6 TECHNOLOGY-SPECIFIC BRIDGES

TSBs connect the client applications that are specific to

the different use cases with the Unified Planning

framework. A TSB contains components and interfaces

that provide additional functionalities that are required

to use the UPF in the applications. For example, TSBs

collect, maintain and transform all the needed data and

encode it in a planning problem by calling the respective

UPF library functions, they invoke the UPF engines at

the appropriate time to generate a plan, they process the

solution to translate it back to the data structures usable

by the client technology. Additional TSBs could execute

the plan, monitor the execution, decide if re-planning is

required, and visualize the plan to the users. In that way,

the overall system can consist of multiple TSBs that

bridge between the UPF and the application systems.

The requirements and implementations of those TSBs

heavily depend on the specific use cases.

Within the AIPlan4EU project we developed many

TSBs to demonstrate both the internal use-cases and the

use-cases elicited by means of open-calls. The internal

use-cases of the project are listed below.

• Space Domain: Generation and Consolidation of

Activity Plans for a remote exploration rover. More

details on this are given in the next sections.

• Agriculture Domain: Organize agricultural

activities for silage maize harvesting.

• Flexible Manufacturing: organization of the

factory activities to achieve a desired production.

The use-case scenario involves the operations to

construct truck axles.

• Logistics Automation: realization of an offline

design aid tool for the automatic debugging of

Behavior Trees used to control an autonomous robot

capable of intra-logistics tasks. Moreover, we

tackled the problem of runtime reactive planning for

Behavior Trees.

• Shuttle Fleet Management: mission assignment for

a fleet of Automated Guided Vehicles to fulfill

transportation demands and use the recharging

stations optimally.

• Automated Experiment Design: automation of

consumer goods testing by means of a robotic arm

controlled by an automated planner.

• Subsea Robotics: realization of an on-line planner

and a re-planner for underwater autonomous

inspection missions.

In addition, we identified and implemented TSBs

offering general functionalities. Those are not specific to

a certain technology but more generic and relevant to

multiple types of application. In this direction, we

identified and implemented two approaches and

functionalities that are relevant: the first one is the

Embedded Systems Bridge ([16]) which serves two

main purposes. Firstly, it helps the user to maintain a

mapping between representations on the UP-planning

side and the application side. Secondly, it provides

functionalities for executing and monitoring a UP plan.

Also, although it was initially aimed at robotic

applications; it was designed in a way that it is

independent from robot frameworks/middleware. The

second approach goes the other way and provides nodes

for ROS and ROS2 ([17]) that wrap the Unified

Planning Framework ([18]).

7 SPACE TSB – INTEGRATION INTO THE

EXOMARS ROCS

The Space Use Case aims to introduce automated

activity planning into the tactical operations planning of

robotic planetary exploration missions. We target the

ExoMars ESA Mars exploration mission and we

demonstrated the integration of the corresponding TSB

into the ExoMars Rover Operations Control System

(ROCS) ([20]).

This section is organized as follows:

− Section 7.1 presents the ExoMars rover autonomy

concept and its organisation in Activities (Tasks and

Actions),

− Section 7.2 presents the ExoMars ROCS operations

planning workflow and discusses the benefits of

introducing an automated planner, and finally,

− Section 7.3 presents the integration of the UP

framework into the Rover Visualization and

Planning (RVP) subsystem of the ExoMars ROCS.

7.1. EXOMARS ROVER AUTONOMY

CONCEPT: ACTIONS, TASKS & STATE

DIAGRAMS

The ExoMars Rover is designed to implement E3 level

of autonomy allowing the “Execution of adaptive

missions operations on-board”. It is capable to adapt the

execution of the plan to the available resources and

equipment’s state and automatically switch to

Alternative Plans prepared by Ground (e.g., lack of

energy with respect to the foreseen energy availability

will induce the selection of an Alternative Plan).

At the basis of the design of the E3 Autonomy level are

the concepts of Action, Task and the RAPD

programming language.

• An Action represents elementary rover Activities

such as MAST_Initialise and GNC_Initialise. The

Actions implement functionalities of a single rover

subsystem (e.g., Mast, Wisdom, etc).

• The Tasks are logical and temporal composition of

Actions (e.g., the RV_Prepare4Travel Task embeds

the MAST_Initialise and GNC_Initialise Actions in

parallel). The Tasks, as composition of Actions

control several subsystems in parallel.

• Finally, the need of an event driven Activity Plan

has led to the definition of a new on-board

mechanism in addition to the standard PUS services

of Mission Time Line, Event Action tables, TC and

DTC files, based on an evolution of the DTCF

executor concept: the Activity Plan is contained in

one (or more) text file(s), following the semantics

of a specific Rover Activity Plan Description

language (RAPD) and are interpreted on-board.

The identification of the Actions associated to each

subsystem is intimately linked with the model of this

subsystem. Briefly speaking, an Action can be triggered

when the subsystem is at a given state, during its

execution sets the system at a new state and finally, at

completion, leaves the system at a final state. For the

ExoMars rover and mission, a significant work has been

performed in close collaboration between the TASI (the

prime of the mission), the scientists responsible of their

instruments and the rover platform responsible to model

all the rover subsystems as Finite State Machines driven

by the Actions. In addition, at each state of the model is

associated a set of information indicating the resources

consumed by the given subsystem at this state. It

includes, the Duration time (sec) (when applicable), the

Power Consumption (Watt) and the Critical/Non-

Critical Data generated.

Figure 2: Example of the Micromega subsystem State

Diagram & Actions

All the concepts, the models, the Actions and the Tasks

described so far are instantiated for the ExoMars Rover

implementation in the TASI Functional Architecture

Document. In particular, 18 subsystems are identified

with 154 associated Actions and 40 Tasks.

7.2. OPERATIONS PLANNING WORKFLOW

The typical rover Activity Planning workflow (also

referred as tactical planning) in ExoMars involves a

well-defined set of steps presented here below; at each

step we detail only the elements that are relevant to the

AIPlan4EU activity. There are:

• Telemetry Acquisition and Processing: the

telemetry packets are received and processed to the

appropriate level to generate products to be further

analysed by the engineering and science teams.

• Engineering and Science Data Assessment: the

rover engineers and the scientists, in parallel,

analyse the rover system status, the followed path,

the payload status, the imagery and the instruments

products. Note that the analysis of the downloaded

data allows to establish the Initial State to be

considered as the starting point for the planning

operations.

• Engineering and Science Planning: the engineers

and the scientists, based on the assessment results,

in parallel, define the Partial Engineering Activity

Plans and the Partial Science Activity Plans they

would like the rover executes in the next period.

Partial Engineering and Science Activity Plans are

manually created by composing Activities using

dedicated MMIs. The prepared Partial Plans are

submitted to a central Activity Planning tool for

further consolidation. The concept of the Partial

Activity Plan is central in our use case.

• Activity Plan Consolidation: during this step an

Activity Planner integrates all the submitted Partial

Science and Engineering Activity Plans and

schedules them in a semi-automatic way in a

Consolidated Activity Plan so that constraints and

resources are respected.

• Activity Plan Validation and Uplink: this step

covers the validation of the Consolidated Activity

Plan by an operational simulator and its uplink. The

validation process creates a simulated Execution

Report and a simulated Final State with which the

real data will be compared in the next Engineering

and Science Data Assessment phase.

Note that this workflow is bounded by the time in

between the reception of the Rover telemetry and the

dispatching of the Activity Plan in the following contact

window and each step shall be completed within strict

deadlines.

The introduction of automated planning is expected to

improve several aspects/steps of the Activity Planning

workflow. Let us discuss three specific aspects:

• The manual generation of Partial Engineering

and the Science Activity Plans requires from the

operators (engineers and scientists) to be aware of

several engineering low level constraints (e.g., set

the robotic system to a state compliant to their

objectives, avoid the use of subsystems that create

conflicts during operations, be aware about the

resource consumption of their objectives). As a

result, the Partial Planning step requires a

significant amount of time to be completed and very

often provides invalid Partial Plans that are later

rejected.

• In the current Activity Planning workflow the

consolidation of the Partial Activity Plans to a

final valid Consolidated Activity Plan to be

uploaded for execution is performed manually.

Filling the gaps between the partial plans to

construct a valid complete plan is time consuming

and error-prone. The automatization of this task

further decreases the required planning time.

• The proposed Partial Engineering and Science

Activity Plans, generally, over subscribe the

available resources (time, power and memory).

Automated planning may generate optimal plans

with respect to the available resources and therefore

maximize the science return. As a particular case of

interest is to automatically identify and propose to

the operator the values of well-defined parameters

that allow to fit the automatically generated plan in

the range of the available resources.

7.3. THE PLANNING MODEL

The core of the Space TSB resides in the so-called

“Problem Encoder” component, which is responsible for

gathering the information on the robotic activities and to

encode the possible evolutions of the system as a

planning problem amenable to being solved with the UP

library.

The Planning problem is constructed starting from

existing engineering models which are currently used

for the operations preparation, the simulation and the

execution of the mission. In particular, the “Activities

Template Library” (ATL) is a database containing all the

Actions and the Tasks (see section 7.1) with a

description of the parameters such activities expose and

their domains. In addition, the ATL contains high-level

description of the requirements (i.e., the conditions) for

the activities and the post-conditions (i.e., the effects).

During the AIPlan4EU project, one of the major

advances has been the refinement of the ATL model to

contain all the information needed for applying

automated planning. We highlight that this approach is

different from creating a planning model from scratch to

be used for planning: we want to use the very same data

source used by ROCS to avoid any problem concerning

model misalignment.

The problem encoder reads the ATL and takes in input

one or more objectives to be performed by the rover

during the tactical planning period. Internally, it

computes a planning model using the UP library

containing all the possible activities that the asset can

perform, it initializes the model and sets the planning

objective. The planning model we construct is an

automatic abstraction of the information contained in the

ATL: we preserve all the details needed for planning and

to guarantee the causal consistency of the plans, but we

discard the irrelevant low-level information; this is

pivotal to construct a model that can be efficiently

solved by current planning engines. We then use the

‘OneshotPlanner’ operation mode to solve the problem

and compute a feasible plan. The plan is first validated

using a high-level simulator called ‘Rehearsal-As-A-

Service’ to check that the plan is valid considering

unmodeled resources. If the plan is valid, it is returned,

otherwise we refine the set of goals and look for another

plan.

7.4. SOFTWARE INTEGRATION

The AIPlan4EU framework has been integrated into the

ExoMars ROCS – RVP component (see Fig. 3) that is at

the center of the Tactical Planning process.

Figure 3: ExoMars ROCS – RVP component

It allows to:

• Render in a synthetic 3D scene the Rover and the

environment in which it operates considering the

rover model, the terrain model, the illumination

sources, shadows and textures,

• Annotate the scene with paths, targets, areas and

labels to support the rover path planning,

• Rehearse rover and rover mechanisms motions to

support the operations planning,

• Present to the operator the available Activities for

ground planning and create Partial Activity Plans as

a composition of Activities,

• Rehearse the Activity Plans (Partial, Nominal or

Alternative), visualize the consumed resources on

dedicated views and charts and finally visualize the

Activity Plans in a Gantt Chart form.

The integration with the UPF is performed as follows:

• The data model is enhanced to integrate the concept

of the Goal; the available Goals are included in the

ATL and visualized in the ‘Activities Library’ view.

• The ‘Activity Plans Editor’ view accepts as inputs

user selected goals and allows the operator to

request the automatic generation of an Activity

Plan. In case a valid Plan cannot be generated the

UPF provides the reason in terms of Goals/States

that cannot be reached.

• The operator may also request by the UPF the

validation of user defined Activity Plans; the

provided feedback allows him to progressively

construct a valid Plan.

• The ‘Consolidated Plans’ view is also connected

with the UPF allowing to construct a complete plan

(Consolidated Activity Plans) from the set of the

Partial Plans submitted by the science and

engineering teams.

From a software point of view the UPF is deployed in a

container and provides its services using REST API.

The benefits of using automated planning in the

Activities Planning Workflow has been evaluated and

confirmed in the particular case of preparing the

ExoMars nominal ‘sol 5’ operations for ‘subsurface

sample collection’ involving rover preparation for

travelling, travelling to the area of interest, preparing for

drilling, drilling and acquiring a subsurface sample and

finally transferring the sample into the sample container.

8 CONCLUSIONS

In the paper we presented the AIPlan4EU European

Horizon 2020 project aiming at lowering the access

barrier for practitioners interested in using automated

planning and scheduling techniques.

It provides a single, easy-to-use access point to planning

technology called Unified Planning. It allows to model,

manipulate, and solve different classes of planning

problems with the support of a collection of planning

engines which are integrated and seamlessly available to

the users The Unified Planning API can then be used to

answer different planning queries in applications.

Many ‘Technology Specific Bridges’ demonstrated the

effectiveness of the approach in various domains

ranging from space to agriculture, flexible

manufacturing, logistics and subsea robotics.

In particular, in the Space domain, the Unified Planning

framework has been integrated into the ExoMars Rover

Operations Control System (ROCS) – RVP component

responsible for the operations tactical planning. The

evaluation clearly shows the benefits on the

minimisation of the duration of the planning cycle and

on the generation of optimized plans.

9 REFERENCES

[1] Malik Ghallab, Dana S. Nau, Paolo Traverso:

Automated planning - theory and practice. Elsevier

2004, ISBN 978-1-55860-856-6, pp. I-XXVIII, 1-635

[2] Malik Ghallab, Dana S. Nau, Paolo Traverso:

Automated Planning and Acting. Cambridge University

Press 2016, ISBN 978-1-107-03727-4

[3] Félix Ingrand, Malik Ghallab: Deliberation for

autonomous robots: A survey. Artif. Intell. 247: 10-44

(2017)

[4] https://www.ai4europe.eu

[5] https://github.com/aiplan4eu/unified-planning

[6] https://ec.europa.eu/info/funding-

tenders/opportunities/portal/screen/opportunities/topic-

details/ict-49-2020

[7] Malte Helmert: The Fast Downward Planning

System. J. Artif. Intell. Res. 26: 191-246 (2006)

[8] Alkhazraji, Y., Frorath, M., Grützner, M., Helmert,

M., Liebetraut, T., Mattmüller, R., Ortlieb, M., Seipp, J.,

Springenberg, T., Stahl, P., & Wülfing, J. (2020).

Pyperplan. Zenodo. 10.5281/zenodo.3700819

[9] Scala, Enrico, Patrik Haslum, Sylvie Thiébaux, and

Miquel Ramirez. "Interval-based relaxation for general

numeric planning." In ECAI 2016, pp. 655-663. IOS

Press, 2016.

[10] Gerevini, A., Saetti, A., & Serina, I. (2003):

Planning Through Stochastic Local Search and

Temporal Action Graphs in LPG. Journal of Artificial

Intelligence Research. 20: 239-290.

[11] Valentini, A., Micheli, A., & Cimatti, A. Temporal

Planning with Intermediate Conditions and Effects.

AAAI 2020, 9975-9982

[12] Torreño, A., Sapena, O., & Onaindia, E. (2014).

FMAP: Distributed cooperative multi-agent planning.

Applied Intelligence, 41(2), 606-626

[13] Roland Godet, Arthur Bit-Monnot. Chronicles for

Representing Hierarchical Planning Problems with

Time. ICAPS Hierarchical Planning Workshop (HPlan),

Jun 2022

[14] Köckemann, U. (2016). Constraint-based Methods

for Human-aware Planning. (Doctoral dissertation).

Örebro: Örebro university

[15] https://github.com/FedericoPecora/coordination_oru

[16] https://github.com/aiplan4eu/embedded-systems-

bridge

[17] Stanford Artificial Intelligence Laboratory et al.

(2018). Robotic Operating System. Retrieved from

https://www.ros.org

[18] https://github.com/aiplan4eu/UP4ROS and

https://github.com/aiplan4eu/UP4ROS2

[19] L. Joudrier e.a.: 3DROCS - 3D Based Rover

Operations Control System, ASTRA 2013

[20] Trucco et al.: ExoMars Rover Operation Control

Centre Design Concept and Simulations, ASTRA 2008

https://github.com/aiplan4eu/unified-planning
https://github.com/FedericoPecora/coordination_oru
https://github.com/aiplan4eu/embedded-systems-bridge
https://github.com/aiplan4eu/embedded-systems-bridge
https://www.ros.org/
https://github.com/aiplan4eu/UP4ROS
https://github.com/aiplan4eu/UP4ROS2

