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1 ABSTRACT 

AIPlan4EU is a European Horizon 2020 project aiming 

at lowering the access barrier for practitioners interested 

in using automated planning and scheduling techniques. 

The project encompasses eight major use-cases, and 

many more have been elicited by a third-party funding 

schema.  

Among the major use-cases, ‘Planning for Space’ targets 

the automation of the planning process of multi-asset 

human-robotic missions as prepared by the National 

Space Agencies, the European Commission, and the 

European Space Agency. Typical examples are the 

ExoMars mission for Mars exploration, as well as 

missions for moon exploration and exploitation. In this 

context, the ground operators prepare Activity Plans to 

be executed by the robotic system on the planet as a 

logical and temporal composition of robotic Activities. 

In addition, the system shall merge Activity Plans 

proposed by different remote operators to a final 

consolidated Activity Plan to be uploaded for execution. 

This paper discusses the project genesis and the major 

results, with a specific focus on the space application 

use-cases and its integration into ESA activities. 

2 INTRODUCTION 

Automated planning is the problem of synthesizing a 

course of actions to achieve a desirable objective 

exploiting a formal model of the system to be controlled 

([1]). Over the years, a plethora of techniques and tools 

have been developed for different kinds and flavors of 

planning problems. Notably, classical planning is the 

problem where the activities of the system are assumed 

to be instantaneous, and the model is finite-state; 

numeric planning extends classical planning by 

allowing numeric variables and arithmetic constraints in 

the model; temporal planning relaxes the instantaneous 

duration assumption and allows the modeling of 

schedules, deadlines and temporal constraints. In 

addition to these classes, others, such as Multi-Agent 

 
1 We use the term “planning engine” in a very broad sense in 

this paper to indicate not only plan generation tools, but also 

Planning, Task and Motion Planning, Contingent 

Planning, are possible ([2]).  

Despite considerable success stories in the literature 

(e.g., [3]), these techniques are rarely employed in real 

world applications and their adoption is hindered by 

technical difficulties. In particular, each planning 

engine1 differs from others in terms of supported 

features, sometimes input language and command line 

interface. While this is not too problematic for planning 

researchers, it makes it hard for practitioners to select 

the right tool for the task at hand and for comparing the 

performances and merits of different planning engines.  

The major objective of the AIPlan4EU Horizon 2020 

project is to overcome this situation, providing a unified 

modeling framework for planning problems and making 

it trivial to test different planning engines. Moreover, the 

project is bringing automated planning to the European 

AI On Demand platform ([4]), reporting a vast number 

of use-cases, demos and experiences to provide planning 

users with all the information needed to explore and use 

automated planning in practice.  

Among the AIPlan4EU project use-cases, one of the 

major ones is planning for space applications, in which 

we demonstrate the use of the Unified Planning library 

([5]) for the automation of the planning process of multi-

asset human-robotic missions as prepared by the 

National Space Agencies, the European Commission, 

and the European Space Agency. Typical examples are 

the ExoMars mission for Mars exploration, as well as 

missions for moon exploration and exploitation. In this 

context, the ground operators prepare Activity Plans to 

be executed by the robotic system on the planet as a 

logical and temporal composition of robotic Activities. 

In addition, the system shall merge Activity Plans 

proposed by different remote operators into a final 

consolidated Activity Plan to be uploaded for execution. 

The paper is structured as follows. We first provide an 

overview of the AIPlan4EU project, its architecture and 

the major results it has produced so far. Then, we present 

any other software asset providing a service in the context of 

automated planning. 



   

 

   

 

the solution we developed for the space-domain use-

case of the project, explaining the problems it can solve, 

its main characteristics and contextualizing it in the state 

of the art. Finally, we discuss the next steps and draw 

our conclusions. 

3 AIPLAN4EU ARCHITECTURE 

AIPlan4EU is a Horizon 2020 project funded by the 

European Commission under the ICT-49 call ([6]). The 

project started in January 2021 and will end in 

December 2023. The focus of the project is to simplify 

the accessibility of automated planning technologies 

bringing them in the European AI On-Demand Platform. 

From a technical perspective, the overarching objective 

of the AIPlan4EU project is to provide a single, easy-to-

use access point to planning technology. Concretely, the 

project developed a Python library, called Unified 

Planning, which provides a convenient API to model, 

manipulate, and solve different classes of planning 

problems. The library leverages a curated collection of 

planning engines which are integrated and seamlessly 

available to the users in such a way that it is possible to 

test and use different engines for a certain problem 

without caring about the engine details: the library takes 

care of the needed rewritings and interfacing 

transparently. The Unified Planning API can then be 

used to answer different planning queries in 

applications. 

 
Figure 1: The AIPlan4EU Overall Architecture 

In addition, the AIPlan4EU project provides several 

“Technology Specific Bridges” (TSB), which are 

interfaces of the Unified Planning services for certain 

domain-specific technologies. For example, we 

developed several reusable TSBs for robotics, allowing 

the use of the Robotic Operating System (ROS) 

infrastructure to interface with the Unified Planning 

services. Error! Reference source not found. 

summarizes in an infographic the project vision: the 

Unified Planning (UP) framework is the central 

component, providing services to the use-cases through 

“Technology Specific Bridges” (TSBs) and abstracting 

away the specificities of planning engines integrated in 

the library. The figure also shows by means of color the 

“domain specific” parts in orange and the “domain 

independent” parts in blue: the UP is designed to be 

domain independent in the way it offers its services and 

relies on a series of domain independent planning 

engines. 

The second technical objective of the AIPlan4EU 

project consists in bringing the unified planning 

framework to users of the AI On-Demand Platform. This 

is done in two ways: we provide educational and case 

study material on the platform, and we provide users of 

the AI4Experiments tool a reusable component 

encapsulating the features of the unified planning 

framework and its engines. 

In the following, we describe in more details the Unified 

Planning framework, the planning engines and the TSB 

concepts before focusing on the space applications and 

describe the part of the project concerned with the 

consolidation of activity plans for ESA missions. 

4 UNIFIED PLANNING 

In order to concretely realize this vision, we designed a 

Python library (called unified_planning in code 

and referred to as “UP library” in this document). The 

library is being developed publicly under a permissive 

open-source license (Apache 2.0) and the code is 

available at https://github.com/aiplan4eu/unified-

planning.  

The library offers a series of unique features to incarnate 

the vision above. First, it provides a clean and 

documented API for creating, manipulating and 

(de)serializing different kinds of planning problems. 

Second, it provides a set of services to solve planning 

problems standardizing the interaction with the 

underlying planning engines by means of “Operation 

Modes” and “Custom Resolution Strategies”. Finally, it 

provides a plug-in system allowing external planning 

engine developers to provide new engine capabilities 

without touching the UP library (and thus benefiting 

from the UP services and interoperability without being 

involved in the UP development in any way). 

The UP library allows the user to represent planning 

problems, scheduling problems, plans and hierarchical 

structures by means of a series of interconnected classes 

provided by the unified_planning.model 

package. This package provides the basic building 

blocks to represent planning entities and allows the user 

to create (either programmatically, or by means of the 

interoperability facilities) the planning elements to then 

pass to the engines to be solved/analyzed/transformed. 

Another core modeling feature we provide is the 

unified_planning.shortcuts package, which 

provides simplified access to the most common features 

of the library without importing them from the various 

sub-packages. The package allows the creation of the 

basic modeling elements as well as the invocation of 

https://github.com/aiplan4eu/unified-planning
https://github.com/aiplan4eu/unified-planning


   

 

   

 

operation modes and the specification of custom 

resolution strategies. At the time of writing, the UP 

library supports the following classes of planning 

problems:  

• Classical planning: a planning problem where all 

the fluents are Boolean and the actions are assumed 

to be instantaneous.  

• Numeric planning: an extension to classical 

planning where fluents can be of numeric type and 

arithmetic can be used in conditions and effects. 

• Temporal planning: the problem of finding a plan 

for a planning problem involving durative actions 

and/or temporal constraints.  

• Scheduling:  a restricted form of temporal planning 

where the set of actions (usually called activities) are 

known in advance and the problem consists in 

deciding the timing of the activities.  

• Multi-agent Planning: a planning problem where 

many agents operate in a common environment, each 

with their own view of the domain. The objective is 

to produce a set of plans, one for each agent, which 

allows the agents to achieve their goals. 

• Contingent planning: an action-based problem in 

which the exact initial state is not entirely known and 

some of the actions produce “observations” upon 

execution.  

• Hierarchical planning: a planning problem 

augmented with high-level tasks that represent 

abstract operations (e.g., processing an order, going 

to some distant location) that may require a 

combination of actions to be achieved. Each high-

level task is associated with one or several methods 

that describe how the task can be decomposed into a 

set of lower-level tasks and actions. 

• Task and Motion Planning (TAMP) integrates Task 

Planning, i.e., the problem of finding a set of discrete 

high-level actions that let the object perform the 

assignment, and Motion Planning, i.e., the problem 

of finding a valid (i.e., collision-free) trajectory and 

subsequent low-level motor commands that allows 

the object to execute such high-level actions in the 

continuous-space environment in which it acts.  

Also, the plans (i.e., the solutions to planning problems) 

are represented in a standardized way in the UP library 

in the package unified_planning.plans. 

Different kinds of problems admit different kinds of 

plans, but multiple plan kinds can be used on the same 

problem description (e.g., for a classical planning 

problem, the simplest kind of plan is a sequence of 

action instances, but also a partial order of actions 

instances can be seen as a more general solution). We 

currently support 5 kinds of plan: 

• Sequential: an ordered sequence of action instances.  

• Partial-Order: a set of action instances and 

precedence constraints among them.  

• Time-Triggered: a sequence of triplets <t, a, d>, 

where t is the time at which durative action needs to 

be started and d is the prescribed duration. 

• Simple Temporal Network: a set of time points 

indicating either the start or the end of a durative 

action and a set of temporal constraints of the form x 

- y <= k where x and y are time-points and k is a 

rational constant. 

• Contingent Plan: a tree structure, where each node 

is an action instance to be executed and the edges are 

labeled with observation. An execution is a path in 

the tree where we select the edges that are observed 

at runtime. 

• Hierarchical Plan: it combines a sequential or time-

triggered plan (that specifies the primitives actions 

achieving the problems objectives) and 

decomposition metadata that associate the primitive 

actions with the high-level tasks they achieve. 

Operation Modes (OMs) represent and standardize the 

possible interactions with a planning engine. Each OM 

defines an API that an engine willing to support the OM 

shall implement: in this way, engines declaring to 

support the same OM can be used interchangeably. All 

the operation modes can be invoked by using the 

Factory class, which implements the engine-selection 

mechanism based on our plug-in system. When calling 

the OM constructor (either from the factory or from the 

shortcuts) it is always possible to specify the name of the 

engine to be used (i.e. to force to select a specific engine, 

if available) or to let the UP to select an engine 

automatically, by specifying only the ProblemKind 

(which can be retrieved automatically from a problem p 

using the p.kind property). An operation mode 

defines and standardizes a possible way to interact with 

a planning engine.  The available operation modes are: 

• OneshotPlanner: single call to a planning engine 

that given a problem returns a plan (or a failure 

response). 

• PlanValidator: given a planning problem and a 

plan, checks if the plan is valid. 

• SequentialSimulator: given a problem provides an 

interactive way to explore the reachable states. 

• Compiler: transforms a given problem into an 

equivalent one performing some kind of rewriting. 

• AnytimePlanner: iteratively generates solutions to 

a planning problem (e.g., incrementally better plans). 

• Replanner: interactively generate new plans given a 

problem and subsequent changes to it. 

• PlanRepairer: given a planning problem and a 

(possibly invalid) plan, returns a valid plan. 



   

 

   

 

• PortfolioSelector: given a planning problem selects 

the best engines to solve the problem. 

Finally, Custom Resolution Strategies (CRS) are 

procedural specifications (i.e., python code) that can be 

used to guide an engine or to specify some action 

behaviors. The general intuition behind CRSs is that 

being the UP a python library it makes sense to cleanly 

expose advanced control capabilities of planning 

engines by allowing the use of python code. Moreover, 

it is sometimes hard to specify complex behaviors using 

standard explicit modeling, while it could be convenient 

to use procedural specifications. The UP library 

currently offers two kinds of CRS: namely Simulated 

Effects and Custom Heuristics. 

5 PLANNING ENGINES 

The integration of different planning engines in the UP 

serves the purpose of lowering the barrier for accessing 

planning technologies. We provide a homogenous 

Python interface that is exposed to the UP, which 

delivers the operation modes and we have identified and 

integrated a number of planning engines from the 

literature, and developed a number of facilities that 

enable the use of such planning engines with different 

operation modes. In particular, we have developed two 

Problem Specifications Interfaces to meet the different 

requirements of integration of the planning engines, and 

we have made the integrated planning engines usable 

across different operating systems (MacOS, Linux, and 

Windows). We concentrated on six kinds of planning 

engines, depending on the expressivity of the planning 

problem formulation, namely: classical planning, 

numeric planning, temporal planning, multi-agent 

planning, refinement planning, and combined task and 

motion planning. Note that the distinction between these 

classes does not prevent that some planning engine 

integrated for a task can also be suitable for one or more 

other tasks, in fact many engines are capable of handling 

multiple classes.  

We support two types of integrations: one is based on a 

declarative representation of the task being solved; the 

other one is based on a procedural representation. The 

declarative interface is based on a well-known standard 

language that is used by the planning community: PDDL 

(Planning Domain Definition Language). This interface 

is based on transforming the data contained in the UP 

into PDDL and using the planning engine through a 

message-passing mechanism based on files. That is, 

once a problem is formulated in the UP, such a problem 

is translated into PDDL (using the facilities provided by 

the UP) and, therefore, any planner supporting PDDL 

can be connected to the UP. The second interface that we 

provide is based on a deeper integration of the planning 

engine in the UP. Instead of interfacing it through files, 

we populate the data structures of the planning engine 

directly from the UP data-structures. While the 

declarative interface makes the infrastructure more 

modular and requires no change to the implementation 

of the planning engine, the deeper integration interface 

potentially reduces the overhead of the integration of the 

planning engine. More importantly, planners using deep 

integration can provide advanced features such as 

custom heuristics and simulated effects, while this is not 

generally possible with a declarative kind of integration. 

As we will see, some planning engines support the 

former interface, while some other planning engines 

support the latter one. We now report some details about 

the engines that have been integrated.  

• Fast Downward ([7]) is a state-of-the-art domain-

independent classical planning system based on 

heuristic forward search. It implements a wide range 

of heuristics and search techniques that are now 

accessible through the UP.  

• Pyperplan ([8]) is a lightweight STRIPS planner 

developed by the participants of a planning course at 

the Albert-Ludwigs-Universität Freiburg 

(Germany). It supports STRIPS actions with uniform 

costs and emphasizes the clarity of code and the 

underlying concepts.  

• ENHSP ([9]) is a heuristic forward state space 

search planner that looks for a plan in the transition 

system induced by the numeric planning problem 

definition. ENHSP is equipped with different search 

strategies and heuristics leading us to use the system 

in multiple operation modes. 

• LPG ([10]) is a planner based on stochastic local 

search and action graphs. The search space of LPG 

consists of “action graphs” representing partial 

plans. The search steps are certain graph 

modifications transforming an action graph into 

another one, and the search is guided by relaxed plan 

heuristics. 

• TAMER ([11]) TAMER is an application-oriented 

temporal planner for the ANML (read as “animal”) 

planning specification language. The objective of 

TAMER is to provide functionalities to model, solve 

and analyze planning problems in practice. 

• FMAP (Forward Multi-Agent Planning) ([12]) is a 

multi-agent planner aimed at solving multi-agent 

planning problems in a cooperative, fully distributed 

and privacy-preserving setting.  

• Aries ([13]) is a constraint-based planner and 

scheduler whose primary focus is on hierarchical and 

temporal planning problems. It works by compiling 

planning problems to a CSP for which it leverages a 

specialized combinatorial solver. 

• SpiderPlan ([14]) is a flexible constraint-based 

planner that can be extended with new types of 



   

 

   

 

constraints SpiderPlan supports TAMP: motion 

planning is implemented as propagation and is based 

on the multi-robot coordination framework ([15]). 

6 TECHNOLOGY-SPECIFIC BRIDGES 

TSBs connect the client applications that are specific to 

the different use cases with the Unified Planning 

framework. A TSB contains components and interfaces 

that provide additional functionalities that are required 

to use the UPF in the applications. For example, TSBs 

collect, maintain and transform all the needed data and 

encode it in a planning problem by calling the respective 

UPF library functions, they invoke the UPF engines at 

the appropriate time to generate a plan, they process the 

solution to translate it back to the data structures usable 

by the client technology. Additional TSBs could execute 

the plan, monitor the execution, decide if re-planning is 

required, and visualize the plan to the users. In that way, 

the overall system can consist of multiple TSBs that 

bridge between the UPF and the application systems. 

The requirements and implementations of those TSBs 

heavily depend on the specific use cases.  

Within the AIPlan4EU project we developed many 

TSBs to demonstrate both the internal use-cases and the 

use-cases elicited by means of open-calls. The internal 

use-cases of the project are listed below. 

• Space Domain: Generation and Consolidation of 

Activity Plans for a remote exploration rover. More 

details on this are given in the next sections. 

• Agriculture Domain: Organize agricultural 

activities for silage maize harvesting. 

• Flexible Manufacturing: organization of the 

factory activities to achieve a desired production. 

The use-case scenario involves the operations to 

construct truck axles. 

• Logistics Automation: realization of an offline 

design aid tool for the automatic debugging of 

Behavior Trees used to control an autonomous robot 

capable of intra-logistics tasks. Moreover, we 

tackled the problem of runtime reactive planning for 

Behavior Trees. 

• Shuttle Fleet Management: mission assignment for 

a fleet of Automated Guided Vehicles to fulfill 

transportation demands and use the recharging 

stations optimally. 

• Automated Experiment Design: automation of 

consumer goods testing by means of a robotic arm 

controlled by an automated planner. 

• Subsea Robotics: realization of an on-line planner 

and a re-planner for underwater autonomous 

inspection missions. 

In addition, we identified and implemented TSBs 

offering general functionalities. Those are not specific to 

a certain technology but more generic and relevant to 

multiple types of application. In this direction, we 

identified and implemented two approaches and 

functionalities that are relevant: the first one is the 

Embedded Systems Bridge ([16]) which serves two 

main purposes. Firstly, it helps the user to maintain a 

mapping between representations on the UP-planning 

side and the application side. Secondly, it provides 

functionalities for executing and monitoring a UP plan. 

Also, although it was initially aimed at robotic 

applications; it was designed in a way that it is 

independent from robot frameworks/middleware. The 

second approach goes the other way and provides nodes 

for ROS and ROS2 ([17]) that wrap the Unified 

Planning Framework ([18]).  

7 SPACE TSB – INTEGRATION INTO THE 

EXOMARS ROCS 

The Space Use Case aims to introduce automated 

activity planning into the tactical operations planning of 

robotic planetary exploration missions. We target the 

ExoMars ESA Mars exploration mission and we 

demonstrated the integration of the corresponding TSB 

into the ExoMars Rover Operations Control System 

(ROCS) ([20]).  

This section is organized as follows: 

− Section 7.1 presents the ExoMars rover autonomy 

concept and its organisation in Activities (Tasks and 

Actions), 

− Section 7.2 presents the ExoMars ROCS operations 

planning workflow and discusses the benefits of 

introducing an automated planner, and finally, 

− Section 7.3 presents the integration of the UP 

framework into the Rover Visualization and 

Planning (RVP) subsystem of the ExoMars ROCS. 

7.1. EXOMARS ROVER AUTONOMY 

CONCEPT: ACTIONS, TASKS & STATE 

DIAGRAMS 

The ExoMars Rover is designed to implement E3 level 

of autonomy allowing the “Execution of adaptive 

missions operations on-board”. It is capable to adapt the 

execution of the plan to the available resources and 

equipment’s state and automatically switch to 

Alternative Plans prepared by Ground (e.g., lack of 

energy with respect to the foreseen energy availability 

will induce the selection of an Alternative Plan). 

At the basis of the design of the E3 Autonomy level are 

the concepts of Action, Task and the RAPD 

programming language.  

• An Action represents elementary rover Activities 

such as MAST_Initialise and GNC_Initialise. The 

Actions implement functionalities of a single rover 

subsystem (e.g., Mast, Wisdom, etc).  

• The Tasks are logical and temporal composition of 

Actions (e.g., the RV_Prepare4Travel Task embeds 



   

 

   

 

the MAST_Initialise and GNC_Initialise Actions in 

parallel). The Tasks, as composition of Actions 

control several subsystems in parallel.  

• Finally, the need of an event driven Activity Plan 

has led to the definition of a new on-board 

mechanism in addition to the standard PUS services 

of Mission Time Line, Event Action tables, TC and 

DTC files, based on an evolution of the DTCF 

executor concept: the Activity Plan is contained in 

one (or more) text file(s), following the semantics 

of a specific Rover Activity Plan Description 

language (RAPD) and are interpreted on-board. 

The identification of the Actions associated to each 

subsystem is intimately linked with the model of this 

subsystem. Briefly speaking, an Action can be triggered 

when the subsystem is at a given state, during its 

execution sets the system at a new state and finally, at 

completion, leaves the system at a final state. For the 

ExoMars rover and mission, a significant work has been 

performed in close collaboration between the TASI (the 

prime of the mission), the scientists responsible of their 

instruments and the rover platform responsible to model 

all the rover subsystems as Finite State Machines driven 

by the Actions. In addition, at each state of the model is 

associated a set of information indicating the resources 

consumed by the given subsystem at this state. It 

includes, the Duration time (sec) (when applicable), the 

Power Consumption (Watt) and the Critical/Non-

Critical Data generated. 

 
Figure 2: Example of the Micromega subsystem State 

Diagram & Actions 

All the concepts, the models, the Actions and the Tasks 

described so far are instantiated for the ExoMars Rover 

implementation in the TASI Functional Architecture 

Document. In particular, 18 subsystems are identified 

with 154 associated Actions and 40 Tasks. 

7.2. OPERATIONS PLANNING WORKFLOW 

The typical rover Activity Planning workflow (also 

referred as tactical planning) in ExoMars involves a 

well-defined set of steps presented here below; at each 

step we detail only the elements that are relevant to the 

AIPlan4EU activity. There are: 

• Telemetry Acquisition and Processing: the 

telemetry packets are received and processed to the 

appropriate level to generate products to be further 

analysed by the engineering and science teams.  

• Engineering and Science Data Assessment: the 

rover engineers and the scientists, in parallel, 

analyse the rover system status, the followed path, 

the payload status, the imagery and the instruments 

products. Note that the analysis of the downloaded 

data allows to establish the Initial State to be 

considered as the starting point for the planning 

operations.  

• Engineering and Science Planning: the engineers 

and the scientists, based on the assessment results, 

in parallel, define the Partial Engineering Activity 

Plans and the Partial Science Activity Plans they 

would like the rover executes in the next period. 

Partial Engineering and Science Activity Plans are 

manually created by composing Activities using 

dedicated MMIs. The prepared Partial Plans are 

submitted to a central Activity Planning tool for 

further consolidation. The concept of the Partial 

Activity Plan is central in our use case. 

• Activity Plan Consolidation: during this step an 

Activity Planner integrates all the submitted Partial 

Science and Engineering Activity Plans and 

schedules them in a semi-automatic way in a 

Consolidated Activity Plan so that constraints and 

resources are respected.  

• Activity Plan Validation and Uplink: this step 

covers the validation of the Consolidated Activity 

Plan by an operational simulator and its uplink. The 

validation process creates a simulated Execution 

Report and a simulated Final State with which the 

real data will be compared in the next Engineering 

and Science Data Assessment phase. 

Note that this workflow is bounded by the time in 

between the reception of the Rover telemetry and the 

dispatching of the Activity Plan in the following contact 

window and each step shall be completed within strict 

deadlines. 

The introduction of automated planning is expected to 

improve several aspects/steps of the Activity Planning 

workflow. Let us discuss three specific aspects:  

• The manual generation of Partial Engineering 

and the Science Activity Plans requires from the 

operators (engineers and scientists) to be aware of 

several engineering low level constraints (e.g., set 

the robotic system to a state compliant to their 

objectives, avoid the use of subsystems that create 

conflicts during operations, be aware about the 

resource consumption of their objectives). As a 

result, the Partial Planning step requires a 

significant amount of time to be completed and very 



   

 

   

 

often provides invalid Partial Plans that are later 

rejected.  

• In the current Activity Planning workflow the 

consolidation of the Partial Activity Plans to a 

final valid Consolidated Activity Plan to be 

uploaded for execution is performed manually. 

Filling the gaps between the partial plans to 

construct a valid complete plan is time consuming 

and error-prone. The automatization of this task 

further decreases the required planning time.  

• The proposed Partial Engineering and Science 

Activity Plans, generally, over subscribe the 

available resources (time, power and memory). 

Automated planning may generate optimal plans 

with respect to the available resources and therefore 

maximize the science return. As a particular case of 

interest is to automatically identify and propose to 

the operator the values of well-defined parameters 

that allow to fit the automatically generated plan in 

the range of the available resources. 

7.3. THE PLANNING MODEL 

The core of the Space TSB resides in the so-called 

“Problem Encoder” component, which is responsible for 

gathering the information on the robotic activities and to 

encode the possible evolutions of the system as a 

planning problem amenable to being solved with the UP 

library. 

The Planning problem is constructed starting from 

existing engineering models which are currently used 

for the operations preparation, the simulation and the 

execution of the mission. In particular, the “Activities 

Template Library” (ATL) is a database containing all the 

Actions and the Tasks (see section 7.1) with a 

description of the parameters such activities expose and 

their domains. In addition, the ATL contains high-level 

description of the requirements (i.e., the conditions) for 

the activities and the post-conditions (i.e., the effects). 

During the AIPlan4EU project, one of the major 

advances has been the refinement of the ATL model to 

contain all the information needed for applying 

automated planning. We highlight that this approach is 

different from creating a planning model from scratch to 

be used for planning: we want to use the very same data 

source used by ROCS to avoid any problem concerning 

model misalignment. 

The problem encoder reads the ATL and takes in input 

one or more objectives to be performed by the rover 

during the tactical planning period. Internally, it 

computes a planning model using the UP library 

containing all the possible activities that the asset can 

perform, it initializes the model and sets the planning 

objective. The planning model we construct is an 

automatic abstraction of the information contained in the 

ATL: we preserve all the details needed for planning and 

to guarantee the causal consistency of the plans, but we 

discard the irrelevant low-level information; this is 

pivotal to construct a model that can be efficiently 

solved by current planning engines. We then use the 

‘OneshotPlanner’ operation mode to solve the problem 

and compute a feasible plan. The plan is first validated 

using a high-level simulator called ‘Rehearsal-As-A-

Service’ to check that the plan is valid considering 

unmodeled resources. If the plan is valid, it is returned, 

otherwise we refine the set of goals and look for another 

plan.   

7.4. SOFTWARE INTEGRATION 

The AIPlan4EU framework has been integrated into the 

ExoMars ROCS – RVP component (see Fig. 3) that is at 

the center of the Tactical Planning process. 

 
Figure 3: ExoMars ROCS – RVP component 

It allows to:  

• Render in a synthetic 3D scene the Rover and the 

environment in which it operates considering the 

rover model, the terrain model, the illumination 

sources, shadows and textures, 

• Annotate the scene with paths, targets, areas and 

labels to support the rover path planning, 

• Rehearse rover and rover mechanisms motions to 

support the operations planning, 

• Present to the operator the available Activities for 

ground planning and create Partial Activity Plans as 

a composition of Activities, 

• Rehearse the Activity Plans (Partial, Nominal or 

Alternative), visualize the consumed resources on 

dedicated views and charts and finally visualize the 

Activity Plans in a Gantt Chart form. 

The integration with the UPF is performed as follows: 

• The data model is enhanced to integrate the concept 

of the Goal; the available Goals are included in the 

ATL and visualized in the ‘Activities Library’ view.  

• The ‘Activity Plans Editor’ view accepts as inputs 

user selected goals and allows the operator to 

request the automatic generation of an Activity 

Plan. In case a valid Plan cannot be generated the 

UPF provides the reason in terms of Goals/States 

that cannot be reached.  

• The operator may also request by the UPF the 

validation of user defined Activity Plans; the 

provided feedback allows him to progressively 

construct a valid Plan. 



   

 

   

 

• The ‘Consolidated Plans’ view is also connected 

with the UPF allowing to construct a complete plan 

(Consolidated Activity Plans) from the set of the 

Partial Plans submitted by the science and 

engineering teams. 

From a software point of view the UPF is deployed in a 

container and provides its services using REST API.  

The benefits of using automated planning in the 

Activities Planning Workflow has been evaluated and 

confirmed in the particular case of preparing the 

ExoMars nominal ‘sol 5’ operations for ‘subsurface 

sample collection’ involving rover preparation for 

travelling, travelling to the area of interest, preparing for 

drilling, drilling and acquiring a subsurface sample and 

finally transferring the sample into the sample container. 

8 CONCLUSIONS  

In the paper we presented the AIPlan4EU European 

Horizon 2020 project aiming at lowering the access 

barrier for practitioners interested in using automated 

planning and scheduling techniques. 

It provides a single, easy-to-use access point to planning 

technology called Unified Planning. It allows to model, 

manipulate, and solve different classes of planning 

problems with the support of a collection of planning 

engines which are integrated and seamlessly available to 

the users The Unified Planning API can then be used to 

answer different planning queries in applications. 

Many ‘Technology Specific Bridges’ demonstrated the 

effectiveness of the approach in various domains 

ranging from space to agriculture, flexible 

manufacturing, logistics and subsea robotics. 

In particular, in the Space domain, the Unified Planning 

framework has been integrated into the ExoMars Rover 

Operations Control System (ROCS) – RVP component 

responsible for the operations tactical planning. The 

evaluation clearly shows the benefits on the 

minimisation of the duration of the planning cycle and 

on the generation of optimized plans. 
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